History-adjusted marginal structural models for estimating time-varying effect modification.

نویسندگان

  • Maya L Petersen
  • Steven G Deeks
  • Jeffrey N Martin
  • Mark J van der Laan
چکیده

Much of epidemiology and clinical medicine is focused on estimating the effects of treatments or interventions administered over time. In such settings of longitudinal treatment, time-dependent confounding is often an important source of bias. Marginal structural models (MSMs) are a powerful tool for estimating the causal effect of a treatment using observational data, particularly when time-dependent confounding is present. In recent statistical work, van der Laan et al. presented a generalized form of MSMs called "history-adjusted" MSMs (Int J Biostat 2005;1:article 4). Unlike standard MSMs, history-adjusted MSMs can be used to estimate modification of treatment effects by time-varying covariates. Estimation of time-dependent causal effect modification is frequently of great practical relevance. For example, clinical researchers are often interested in how the prognostic significance of a biomarker for treatment response can change over time. This article provides a practical introduction to the implementation and interpretation of history-adjusted MSMs. The method is illustrated using a clinical question drawn from the treatment of human immunodeficiency virus infection. Observational cohort data from San Francisco, California, collected between 2000 and 2004, are used to estimate the effect of time until switching antiretroviral therapy regimens among patients receiving a non suppressive regimen and how this effect differs depending on CD4-positive T-lymphocyte count.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invited Commentary Invited Commentary: Effect Modification by Time-varying Covariates

Marginal structural models (MSMs) allow estimation of effect modification by baseline covariates, but they are less useful for estimating effect modification by evolving time-varying covariates. Rather, structural nested models (SNMs) were specifically designed to estimate effect modification by time-varying covariates. In their paper, Petersen et al. (Am J Epidemiol 2007;000:000–00) describe h...

متن کامل

Structural accelerated failure time models for survival analysis in studies with time-varying treatments.

BACKGROUND In the absence of unmeasured confounding factors and model misspecification, standard methods for estimating the causal effect of time-varying treatments on survival are biased when (i) there exists a time-dependent risk factor for survival that also predicts subsequent treatment and (ii) past treatment history predicts subsequent risk factor level. In contrast, structural models pro...

متن کامل

Marginal Structural Cox Models with Case-Cohort Sampling

A common objective of biomedical cohort studies is assessing the effect of a time-varying treatment or exposure on a survival time. In the presence of time-varying confounders, marginal structural models fit using inverse probability weighting can be employed to obtain a consistent and asymptotically normal estimator of the causal effect of a time-varying treatment. This article considers estim...

متن کامل

History-Adjusted Marginal Structural Models to Estimate Time-Varying Effect Modification

Much of epidemiology and clinical medicine is focused on the estimation of treatments or interventions administered over time. In such settings of longitudinal treatment, time-dependent confounding is often an important source of bias. Marginal structural models are a powerful tool for estimating the causal effect of a treatment using observational data, particularly when time-dependent confoun...

متن کامل

Causal Modeling Under Complex Dependency in Clustered and Longitudinal Observations

In assessing the efficacy of a time-varying treatment Marginal Structural Models (MSMs) and Structural Nested Mean Models (SNMMs) are useful in dealing with confounding by variables affected by earlier treatments. MSMs model the joint effect of treatments on the marginal mean of the potential outcome, whereas SNMMs model the joint effect of treatments on the mean of the potential outcome condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of epidemiology

دوره 166 9  شماره 

صفحات  -

تاریخ انتشار 2007